II B.Tech - II Semester - Regular / Supplementary Examinations MAY - 2024

DIGITAL AND ANALOG CIRCUITS (ELECTRICAL \& ELECTRONICS ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	What are the methods for converting Decimal to Binary conversion? Give some examples.	L2	CO1	6 M
	b)	Reduce the following function using k-map technique $f(A, B, C, D)=\sum m(0,1,4,8,9,10)$	L4	CO3	8 M
OR					
2	a)	Minimize the Boolean expression: $A B+A B C+A B C+A B C$	L3	CO 2	7 M
	b)	Minimize the following expression in the POS form $f(A, B, C, D)=\pi M(0,2,3,8,9,12,13,15)$	L4	CO 3	7 M

	UNIT-II				
3	a)	Construct a half adder and full adder using gates.	L3	CO 2	7 M
	b)	Draw the logic diagram of BCD to Excess 3 -code converter.	L4	CO3	7 M
OR					
4	a)	Construct a 3 to 8 decoder.	L3	CO2	7 M
	b)	Implement a full adder using 8:1 multiplexer.	L3	CO 2	7 M
UNIT-III					
5	a)	Explain in detail SR \& D flip-flop with neat logic diagram.	L4	CO3	7 M
	b)	Design a 4-bit binary UP/DOWN ripple counter.	L4	CO3	7 M
OR					
6	a)	Explain synchronous decade counter using JK flip-flop with block diagram.	L3	CO 2	7 M
	b)	Draw and explain the working of universal shift register.	L3	CO 2	7 M
UNIT-IV					
7	a)	Draw the circuit of inverting amplifier using Op-Amp and derive the expression for the gain.	L3	CO4	7 M
	b)	Explain the operation of Op-Amp as an ideal active Differentiator.	L3	CO4	7 M
OR					

8	a)	Discuss the first order low pass butter-worth filter and analyse the same by deriving the gain and phase angle equation.	L4	CO5	8 M
	b)	Draw the circuit diagram of RC phase Shift Oscillator using Op-Amp and explain its operation.	L4	CO5	6 M
UNIT-V					

