Code: 20EE3403

II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2024

DIGITAL AND ANALOG CIRCUITS (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks		
UNIT-I							
1	a)	What are the methods for converting	L2	CO1	6 M		
		Decimal to Binary conversion? Give some					
		examples.					
	b)	Reduce the following function using k-map	L4	CO3	8 M		
		technique					
		$f(A, B, C, D) = \sum m(0,1,4,8,9,10)$					
OR							
2	a)	Minimize the Boolean expression:	L3	CO2	7 M		
		AB + ABC + ABC + ABC					
	b)	Minimize the following expression in the	L4	CO3	7 M		
		POS form					
		$f(A, B, C, D) = \pi M(0,2,3,8,9,12,13,15)$					

		UNIT-II					
3	a)	Construct a half adder and full adder using	L3	CO2	7 M		
		gates.					
	b)	Draw the logic diagram of BCD to Excess	L4	CO3	7 M		
		3-code converter.					
OR							
4	a)	Construct a 3 to 8 decoder.	L3	CO2	7 M		
	b)	Implement a full adder using 8:1 multiplexer.	L3	CO2	7 M		
		UNIT-III					
5	a)	Explain in detail SR & D flip-flop with neat	L4	CO3	7 M		
		logic diagram.					
	b)	Design a 4-bit binary UP/DOWN ripple	L4	CO3	7 M		
		counter.					
		OR					
6	a)	Explain synchronous decade counter using	L3	CO2	7 M		
		JK flip-flop with block diagram.					
	b)	Draw and explain the working of universal	L3	CO2	7 M		
		shift register.					
		UNIT-IV					
7	a)	Draw the circuit of inverting amplifier using	L3	CO4	7 M		
		Op-Amp and derive the expression for the					
		gain.					
	b)	Explain the operation of Op-Amp as an	L3	CO4	7 M		
		ideal active Differentiator.					
		OR					

8	a)	Discuss the first order low pass butter-worth	L4	CO5	8 M		
		filter and analyse the same by deriving the					
		gain and phase angle equation.					
	b)	Draw the circuit diagram of RC phase Shift	L4	CO5	6 M		
		Oscillator using Op-Amp and explain its					
		operation.					
UNIT-V							
9	a)	Draw the schematic circuit diagram of dual	L4	CO5	7 M		
		slope A/D converter and explain its					
		operation.					
	b)	List out various types of A/D converters and	L4	CO5	7 M		
		compare them with its merits and demerits.					
	OR						
10	a)	Illustrate the operation of sample and hold	L3	CO4	7 M		
		circuit with neat waveforms.					
	b)	Draw circuit diagram of R-2R Ladder type	L3	CO4	7 M		
		D/A converter and explain its operation.					